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Abstract.
We present expressions for absolute and relative errors in individual components of the so-

lution to systems of linear equations. We consider three kinds of linear systems: non-singular,
underdetermined of full row rank, and least squares of full column rank. No assumptions regarding
the structure or distribution of the perturbations are required.

Our expressions for component-wise relative errors allow the following conclusions: For any
linear system there is at least one solution component whose sensitivity to perturbations is propor-
tional to the condition number of the matrix; but - depending on the relation between right-hand
side and matrix - there may exist components that are much better conditioned. For a least squares
problem, the sensitivity of the components also depends on the right-hand side and may be as high
as the square of the condition number. Least sqaares problems are therefore always more receptive
to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underde-
termined linear systems of full column rank, the problem of finding the minimal-norm solution can
be formulated so that the same analysis as for least squares problems is applicable here as well.

Finally, we define component-wise condition numbers that measure the sensitivity of the so-
lution components to perturbations. They have simple geometric interpretations and can be com-
puted and estimated as efficiently as the conventional condition numbers.
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1 Introduction

Most people would probably believe that there is nothing left to be done when it comes to error
analysis for the solution of linear systems of equations and linear least squares problems, especially
where perturbation analysis without regard to a particular algorithm is concerned. So, why yet
another paper on the subject?

We want to demonstrate that a careful perturbation analysis is capable of providing a realistic
assessment of the error and reliable measures of the sensitivity of the solution to perturbations in
the data.

In particular, we derive expressions for the errors in individual components of the solution vector.
These expressions give rise to realistic and efficiently computable error bounds. The derivations of
the error expressions require no restrictions on the structure or distribution of the perturbations.
Without any knowledge of the 4nderlying algorithm, we can therefore obtain a great deal of infor-
mation about the sensitivity of individual solution components to perturbations in the data - much
more, in fact, than what is provided by conventional perturbation results.

1.1 Motivation

Consider the solution of a system of linear equations Ax = b with non-singular coefficient matrix A.
The computed solution i, which is usually different from the true solution x, can be viewed as
the true solution to a perturbed system (A + F)" = b + f. Let's assume we do not know which
algorithm was used for the computation of i, so we have no knowledge about the structure of the
perturbations F and f.

Only very infrequently, e.g. [4, 15], does one try to assess the error in individual solution
components. The conventional way of assessing the error in i, as compared to the true solution x,
is to estimate an upper bound on the norm-based' relative error 112- xII/Iixlz. The most commonly
used first-order bound is

li -ni x1 (A)(pA + Pb),
1lXil

where the condition number ,c(A) = JAil IIA-111 > I acts as an amplifier for the relative perturbations
in the data PA = IIFiI/lAl and Pb = lfJh/ilbJl. This norm-based bound has led to a rule of thumb:
If, for instance, ic(A) is about I0', and the size of the relative perturbations is about I0 - , then the
computed solution i can be expected to be accurate to 7 - 3 = 4 significant digits.

In many situations this type of error assessment is just fine - unless, however, the individual
components of the solution have physical significance as, for example, in statistical applications [21).
Consider the linear system Ax = b, where

' ') (' () o
Suppose the computed solution is 2 = i where c is a very small positive number. Then i can 0

be viewed as the true solution to the perturbed system o1( 0) (1
A+ + = A 0,n/+A+F=A=Q 0) b"=() "4A P

'The following inequalities hold for any vector p-norm and induced matrix norm; see Section 2 in [12), for instance. tty Codes
In tI is paper we use the two-norm.
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Because A is the identity matrix, t(A) = 1, and the above error bound tells us that P - xIl/IzXIIE.
So the error in the solution seems to be no more than the error in the data, which is all we are
entitled to. However, the second component of the computed solution has component-wise relative
error

2

i2 -2 - 0

and is thus totally wrong. Therefore, a small bound on the norm-based error does not guarantee
accuracy in individual components of the computed solution.

Of course, you could argue now that this should have been anticipated. Since X2 is zero, hence
small in magnitude, one should not expect to compute it correctly in the first place. Accordingly,
we could account for it by estimating the error in each component i of tb computed solution via

Iii - xiI < " - '11 (A) (PA + Pb),

provided zi $ 0. The amplifiers for the relative perturbations are now the condition number, as
well as the size of an individual component relative to the whole solution. This modification yields
a correct assessment for the errors in individual solution components of the above example.

Unfortunately, we have not really fixed the problem. The condition number x(A) can still
severely over estimate the error in some solution components, as the following 4 x 4 linear system
demonstrates.

10.4919 0.1112 -0.6234 -0.6228 (0.4351 '
-0.5050 -0.6239 0.0589 0.0595 ( -0.1929

'A 0.5728 -0.0843 0.7480 0.7483 b 0.6165

-0.4181 0.7689 0.2200 0.2204 / -0.8022

The first three columns of A are nearly orthogonal while the last two columns are almost identical.
Both the two-norm condition number 1C2(A) and Skeel's condition number [19] are larger than 103.
Note that the matrix is not ill-scaled.

But the 'component-wise condition numbers' that we will introduce in this paper turn out to be

< 1.1, < 1.1, > 103, > 103.

This means that the first two components of x are well-conditioned and the remaining two are
ill-conditioned, regardless of the perturbations. To illustrate this, compare the 'exact' solution
computed with 16-digit arithmetic

X = (1.000075414240576 -. 5000879795933286 -. 0242511388797165 .02624513955005858),

with the solution computed with 4-digit arithmetic, which can be viewed as the solution to a per-
turbed problem,

T = (1.000 -. 5003 -. 0589 .06090).

As nredicted by our component-wise condition numbers, the first two components are accurate to
almost four digits, whercas the last two have no accuracy whatsoever. As far as we know no other
existing condition numbers can predict the well-conditioning of the first two components of this
system.

Therefore, the conventional norm-based bounds are apparently not able to estimate the accuracy
of individual components orrr'ctly. We hope to %.ave iiow prviJdd enough motivation for the need
to study component-wise relative errors and the sensitivity to perturbations of individual solution
components.

2 Whenever xi = 0 while f, * 0, the component-wise relative error has ii instead of x, in the denominator.
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1.2 Overview

Given a linear system Ax = b of full column rank and a perturbed system (A + F)2 = b + f, we
derive expressions for the error in individual components of the computed solution 2. Our work is
more general than that of Skeel [19] on component-wise perturbations and that of Stewart [22] on
stochastic perturbations because we make no assumptions about the perturbations F and f, either
their size, structure or distribution.

In particular, we show that there is always one component of the solution vector whose sensitivity
to relative perturbations is proportional to the condition number of the matrix; but - depending
on tla right-hand side - there may exist components that are much better conditioned. Therefore
the conventional upper bounds on norm-wise relative errors are as tight as possible, and if they are
pessimistic it is because they represent an inadequate means of measuring the error.

We derive condition numbers for individual components for the solution of a linear system, which
we call 'component-wise condition numbers'. We thus associate with a linear system Ax = b not a
single condition number but a set of condition numbers. Our work, although developed indepen-
dently, can therefore be considered a continuation of Stewart's work on collinearity in regression
problems [211. The singular value decomposition, often used to determine the conventional condi-
tion number of a matrix, provides a basis for the column space but does not relate this basis to
the columns of the matrix. In contrast, Stewart's condition numbers are designed to expose the
most linearly dependent columns of a matrix. They are embedded in our component-wise condi-
tion numbers, whose purpose is not only to recognise linearly dependent columns but also to reflect
the relationship between matrix and right-hand side. We provide a geometric interpretation for
Stewart's condition numbers and demonstrate that they are 'inherent' in the inverse of the matrix.

All of our results also hold for the solution of linear least squares problems miny hjAy - bhi of full
column rank. The set of component-wise condition numbers for a least squares problem contains
those for a linear system as a subset, hence the sensitivity of some solution components may be much
lower than the condition number. In particular, we show that there is a component of the solution
vector whose sensitivity to relative perturbations equals at least the product of condition number
and tan 0, where 0 is the angle between the right-hand side and the column space of the matrix; the
sensitivity can be as high as the product of tan0 and the square of the condition number. Least
squares problems are therefore always more receptive to ill-conditioning than linear systems.

In addition, we show that the component-wise relative errors for linear systems are reduced by
column scaling only if column scaling manages to reduce the perturbations. Regarding underdeter-
mined linear systems of full column rank, the problem of finding the minimal-norm solution can be
formulated so that the same analysis as for least squares problems is applicable.

The expressions for the errors in the solution of least squares problems and underdetermined
linear systems can be used, for instance, to obtain perturbation results for the computation of left
and right inverses of matrix.

In Section 2 we present the basic ideas contained in this paper. We derive them from first
principles, keeping technical details to a minimum. Section 3 and Appendix 2 contain a detailed
perturbation theory for the solution of linear systems of full column rank, and Section 4 extends
it to the solution of least squares problems of full column rank. The treatment -f full rank Icast
squares problems is extended to the solution of underdetermined linear systems of full row rank
in Section 5. In Section 6 we discuss the efficient computation and estimation of component-wise
condition numbers. In particular, we show how to compute them via updating QR decompositions,
and how to estimate them by means of conventional condition numbers estimators. A short summary
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of the paper is followed by Appendix 1, where expressions for the left-inverse of a matrix are derived
in order to justify our choice of condition numbers as a natural measure of sensitivity.

Although we concentrate on component-wise relative errors, expressions for component-wise ab-
solute errors are also included; the corresponding condition numbers can be computed as easily as
those for conventional norm-based errors.

1.3 Summary of Notation

We give a brief summary of frequently used notation for easy reference. This notation is also
introduced in the body of the paper whenever it appears for the first time.

The norm i" - represents the two-norm, and ei stands for the ith column of the identity matrix I,
whose order will be clear from the context. The column space of a matrix A, {c : Az = c}, is
represented by IZ(A) and its nullspace, { : Ax = 01 by Ker(A). The subspace in real n-space R"
that is orthogonal to the space span{vi,..., vk} spanned by n x 1 vectors v1, ... , Vk is denoted by
span, " {vi .... , VO}.

The columns of a n x m matrix A are denoted by ai, and if A is of rank m the rows of its
left-inverse At are denoted by r ,

A-=(at ... amn) At=

The singular value decomposition (SVD) of a n x m matrix A, n > m, is represented as A =
UEV T , where U is a n x n orthogonal matrix, V is a m x m orthogonal matrix, and the mx n diagonal
matrix E has as its diagonal elements the singular values of A in descending order or, > ... > am > 0.
The two-norm condition number of a full-rank matrix A is denoted by x(A) = flAil JfAtI[.

If z solves the least squares problem miny IfAy - b]l then the residual is denoted by r = b - Ax.

2 The Basic Ideas

We start out by illustrating the ideas that led us to pursue a component-wise perturbation analysis;
this is done by studying perturbations in the right-hand side only. We also restrict ourselves to the
solution of full-rank least squares problems until Section 5 where the results are extended to the
solution of underdetermined linear systems of full row rank.

As for notation, 1 1 jj represents the two-norm, and ei stands for the ith column of the identity
matrix I.

2.1 Motivation

The first theorem gives a simple geometric interpretation of the components of the solution x to a
full-rank least squares problem miny IlAy - bfl. An individual solution component can be expressed
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as a product of three factors: the length of a row in the left-inverse At, the length of the right-hand
side and the angle between the two.

Theorem 1 Given a n x m matrix A of rank m, denote by rTi the rows of its left-inverse At,

At = (A T A)-A T =

Then the components zi of the solution x to the least squares problem min, [Ay - b1 are given by

zi = rTb = I1rill IlbII cosfli, 1 < i < m,

where ,i is the angle between ri and b.

Proof. The vector x solves min, hjAy - bjl if and if only it solves the normal equations ATAX = ATb.
So x = Atb, which implies x, = rTb = 11rll hibj) coso3, where 3i is the angle between ri and b. 8

Already in [20] Stewart recognised the importance of the 11rill for the purpose of detecting almost
linearly dependent columns in A. In fact, it turns out that length and angles associated with the ri
indicate the sensitivity of individual components of the solution z to perturbations in the right-hand
side.

Theorem 2 Given a matrix A of full column rank, let z 6 0 solve min ljAy - b[l and let i solve
min , JjAy - (b + f)JI.

Denote by 1'i the angle between ri and f. Then

t = zi + rif = xi + ilrdil 11f11 cos,,.

If zi #6 0 and cb = Ifih/Ilbli then

ii - Zi (6CSIk
Zi 0OS A

Ilbl hlxhI hAIl 1r1l Eb COS '.
-AIIhlxhl xi

Proof- According to Theorem 1,

1i = rT(b + f) = rTb + rTf = xi + rTf = xi + Irdil Ilfl cos ,

where 43i is the angle between ri and f. Since 0 # x1 = rTb = 1ri 1 Ibil cos Oj we have

i - zi rTf 1 lfilcoso,.
Z r rb cosh Jibjl

The theorem states that the absolute perturbation 11f 1 cos O, in ii - zi is amplified by 1Irill. In
the first expression for the relative error, the perturbation cb cos Oi is amplied by 1/cos fi. That
is, the 'more orthogonal' b is to ri, the smaller is cos Oh, and the larger is the amplification of the
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relative perturbation. Therefore, the component-wise relative error is likely to increase, the more
orthogonal ri is to the right-hand side.

Comparing the two amplifiers we see that the amplifier Urill in the absolute error only refers to
the matrix and ignores b, while the amplifier 1/cos3i, in the first expression for the relative error
describes a relationship between the matrix and the right-hand side.

The second expression for the relative error in Theorem 2 is more conventional and perhaps
easier to interpret. It consists of the relative perturbation cb cos i,, amplified by three factors: the
magnitude of z, relative to 11:11; the term hAil lrdil, which describes the condition of the matrix and
will be studied more closely in Section 2.2; and the term - , which is common to all components
and describes the relation between matrix and right-hand side. If we denote by X(A) = JJAfJ lAtj
the condition number of the matrix A then JhAll llrill can be bounded by

1 e7'1 = ll e7'gtA < IleT AtlI IIAII = flAIIl hiall l x(A),

A lower bound for -jfl1 lT, provided z #4 0, is

Ilbl 1 1> 1

IIAII JIxll - IAbII A- - -(A)

In case of a linear system Ax = b,

lbll _ lAzl < 1,
IIAI zll -- IAIl z I I -

otherwise it can be unbounded since b may be almost orthogonal to all rows of At.

Therefore, the component-wise relative error tends to be large for those components xi whose
size is small in comparison to [[xi[, or whose matrix condition number flAIl liril is large, or whose
right-hand side is nearly orthogonal to all rows of At. The three amplification factors in the second
expression for the relative error in Theorem 2 provide a clear separation of the factors responsible
for the loss of accuracy in the computed solution: relative magnitude of the solution components,
matrix condition, and relationship between matrix and right-hand side.

In Sections 3 and 4 we show that the same quantities that determine the sensitivity to right-hand
side perturbations also determine the sensitivity to perturbations in the matrix. First, though, we
relate them to more established ways of measuring sensitivity.

2.2 Relation to Singular Values

The goal of this section is to compare the amplification factors for the usual norm-based errors with
those for our new component-wise errors.

Because the two-norm condition number K(A) = llAll [lAtil equals the ratio of the extreme singu-
lar values of A, we can relate the llrill to the singular values of A and obtain the following well-known
inequalities.

Theorem 3 Let A be a n x m matriz'of rank m with singular values al > ... a> r, > 0, and denote
b! r the rows of At. Then

1 1
Cm a,-<0, am < m -1 <V'm~m.

- iril - k lirkha
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If IIr.m.Il = maxk lirkll then
IIA II I~ l IIA II IIA IIll V / 'IIA II llr .. l-

Proof: The singular values of the left inverse At are 1/,i, Section 5.5.4 in [12], hence 1l, _< Ilr,ll :<
1/ar, giving the first set of inequalities.

Let A = UEV T be the singular value decomposition of A. The last row eT VT of VT is a vector
with unit two-norm in Rm, so at least one of its components, say the jth, must be of magnitude

1/Vm. Hence the jth row rj of At satisfies
1 1

IlrjIl = IlU,(T )-IVTeI = II (LTF)-IVTe I]> e ( - e V- Om

yielding the second set of inequalities.

The last set of inequalities comes from llrma:Il <IlAtI = 1/Urn. a

Applying Theorem 3 to the second expression for the component-wise error in Theorem 2 shows
that there must exist a component iL for which

l- kl > 1 IlbIl K(A)- cbI cosiPLkI.
Iz k - ./m hIAIJlzl l cx sz I "

Therefore, the sensitivity of zk to right-hand side perturbations is proportional to the condition

number of A whenever the right-hand side has an appropriate direction, that is, whenever

is not too small

We briefly take a closer look at this last condition. When Ax = b and b is a singular vector
associated with the smallest singular value am of A, hlAtbl[/llbll = 1/orn = hAtlh, then

l I and lI!Il I I ll lA] rill =I f <l LIIAII 11 l =  (A) ' Iand II II Il-- --- ll < 1

According to the expressions for the errors in Theorem 2, the sensitvity of all solution components
to right-hand side perturbations is then solely determined by their relative magnitude.

The existence of a row of At wbose norm approximates 1/arn well, as evidenced by Theorem 3,
underlies the rank-revealing QR factorisations, which first appeared in [11, 13], and are further
analysed and refined in [20, 10, 6, 21]. In the simplest case, the goal of a rank-revealing QR
factorisation is to determine the most linearly dependent column of a matrix A. To this end one
performs the QR factorisation AP = QR, where Q has orthonormal columns, R is upper triangular
and the permutation matrix P is chosen so as to minimise the trailing diagonal element (R)m, of R.
Then the inverse of this element, 1/l(R)mmI = IleTR-'ll = lrhl 1, is as large as possible, and thus
close to 1/rn.

While Theorem 3 states that at least one ir 11 approximates the smallest singular value well, the
following corollary indicates that each hirill cannot stray too far away from some singular value.

Theorem 4 Let A 6e a n x m matrix of rank m with singular values u1 > ... > am > 0, and let

IIAIIF = a., denote the Frobenius norm of A.
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If the Ilr,jI are ordered by increasing norm, lrj1 , .. IIr,.,I then

m 1 1 k
-- IIAtI< + . + 1 < k < m- 1.

Proof. The equality results from the invariance of the Frobenius norm under orthogonal transfor-
mations, Section 2.5.3 in [12].

The inequalities are obtained by applying the proof of Theorem 4.3.26 in [17] to the singular
values of At. N

Remark I It is important to realise that the looseness of the inequalities in Theorem 3 depends on
how close the right singular vector matrix of A is to a permutation matrix: if A = UEV T is the
SVD of A then

IIrI = IIUE(ET E)-1 VTe,II = IIE(ETE)- 1VTeII.

Thus, if V is a permutation matrix (this includes diagonal matrices) then we can find indices that
achieve the bounds in Theorem 3 since Ilrill = 1/o for some k.

2.3 Conventional Error Bounds

In this section we present a rather unconventional way of deriving bounds on the norm-based relative
error, by making use of the theorems from the previous sections.

An expression for the absolute norm-based error in the infinity-norm is available from Theorem 2,

III - 1 = max {Ilr,It 111 Icos i}.

Dividing this by IIII results in a mixed-norm relative error

II -- _ fAx lm Ilril IlbIl ebICO il}
II ll IIAII # 1 o

where Cb = IlfIII/Ibll. Denoting by ic(A) = IhAIl IIAtlI the condition number of A, we obtain an upper
bound for the norm-based relative error from Theorem 3,

IIz - - Zxj < v/IR(A) IIAII eb.
fIzil lilI hJAil hIzhl

In case of a linear system Ax - b, Ilbll < IlaII IilxI and the bound simplifies to

II - zl_._ _ < v' ,i(A)cb.

In this last form, the upper bound agrees with the conventional bounds. Its amplification factor for
the perturbations consists of the condition number K(A) of the matrix but ignores the relationship
between matrix and right-hand side.

Theorem 3 also comes in handy for the derivation of the lower bound

-z[- = max {1AII llbl_11 cbl coskil} >! L (A) Ilt (b/,

I111II -- I t IJA II I1x I1 - 'r

I I Iln l ln un nu mmuil l~~~iiluull lmn l m w - - -- -'8-



a1  spank {aL

ZL = S pank#, {ak)

Figure 1: Angles Associated with Columns.

where p = maxi{1,111riI cos ,,I}/ max lirkll.

To summarise, we have derived lower and upper bounds on the norm-wise relative error for
perturbations restricted to the right-hand side,

I fc(A) Ilbll I1P - xll < - c(A) libll7 (A) IIA Ill-- -- --11 , _ Illll -IIAI ll "

In the absence of knowledge about the value of cos Oi we have to assume the worst case y = 1, which
implies that the norm-based error bound is tight. Therefore the conventional upper bounds are as
good as possible - given that one has chosen to measure a norm-based error. We have therefore
shown that, if the norm-wise bounds give unsatisfying information, it is not because the bounds are
loose but rather because an unsatisfying way of measuring the error was adopted in the first place.

When Ax = b and b is a singular vector associated with the smallest singular value grn of A,
IAtbii/llbi = l/oU = hlAtll, then IhAII hlil/hlbl = x(A) and

< liz!--4 -
In this special case the norm-wise relative error is of about the same magnitude as the perturbation
in the right-hand side and does not depend on the condition number of A, an observation already
made by Chan and Foulser (7].

2.4 Geometric Interpretation

We have seen so far that individual components of the solution z to a full-rank least squares problem
min, IhAy - bl can be expressed as zi = lril hlbll cosi, where rT is the ith row of At and A3 is the
angle between ri and b; that lirill and 1/cos3i determine the sensitivity of xi to perturbations in b;
and that at least one 1/llrjll approximates the smallest singular value of A well.

Now we want to give a geometric interpretation of the ilrill in terms of the columns in the original
matrix A. This will allow us to determine how exactly the linear independence of the columns of A
and their relationship to b affects the sensitivity of individual solution components to perturbations.

As for notation, the column space of a matrix A is represented by "Z(A) and its nulhpace by
Ker(A). The subspace in real n-space R' that is orthogonal to the space span{vx, . . ., vk spanned
by n x 1 vectors vj, ... , vk is denoted by span,{vi,.. .,v}.

We first show that the size of the Ilril reflects the linear dependence of the ith column of A on
all others.

9



Theorem 5 Given a n x m matriz A of rank m, denote by ai its columns, and by rT the rows of

its left-inverse At,

A=(a, ... an), At =(AA)-A T = "

Then IZ((At)T) = JZ(A) and

P il[ l ai o a ' 1 < i < m ,
e1i11Cs a,'

where -jT < o, < 17r is the a.igle between ri and ai.

Proof: Because A has full column rank, AT A is non-singular, and Ax = A(ATA)-lz (At)Tz,
where z = ATAz, which implies that IZ((At)T) = R(A).

The ith diagonal element of I = AtA satisfies 1 = rTai -= j1ril IaiJ cosai, where ai is the angle
between ri and ai. Hence cosa, > 0, so -I r < ai < , and i1rill = 1

Because eT = rTA, ri is orthogonal to all columns of A except for ai, that is ri E span' i {ak},
see Figure 1. Theorem 11 and Corollary 5 of Appendix 1 show that the ith row rT of At has the
same direction as the residual in the least squares approximation of column ai by the remaining
columns: if A, contains all columns of A except for ai then

T 1 1_I i
ri = e~A1 =aill cosai Ijai ,

where -di = Aiz-ai is the residual for the solution z to the least squares problem miny IAiy - aill.
In other words, dii is the projection of ai onto the orthogonal complement of iZ(Ai), and r i has the
same direction as i.

With regard to the length of ri, it follows that

T1r I = _ I

This means, the better the remaining columns A approximate ai the smaller is the residual II ill
and the larger is lfrill. That is, the more linearly dependent ai is on the other columns, the larger
is tlrill.

The relationship between the length of r i and the norm of the residual is already known. In [21]
Stewart uses a different argument to show that

1
lhil = minJAiy - aiJl =

Our contribution here is to provide more justification for the choice of ri as an indicator of sensitivity.
Because ri is a multiple of the residual iii, the residual is inherent in A -.nd thus represents a most
natural choice for sensitivity measure.

Our veometric interprtation of the rows of the left-inverse justifies the use of rank-revealing QR
factorisat ons to determine the most linearly dependent column of a matrix. If the permutation
matrix P for the QR factorisation AP = QR is chosen so that the trailing diagonal element J(R)innI
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of R is minimal, then the residual x/1rTjl1 = XljeTR-lI = I(R).lI is minimal. This implies that
the last column of AP is the column that can be best approximated by all other columns and so is
the most linearly dependent among all columns.

The individual components of the solution x to a least squares problem min, fjAy - bli can be

expressed as
zi = 11ill 1I Ibli cosfli = 11bil coosfl

il, l cos ti',

The denominator of zi indicates the linear dependence of column ai on all others, while the numerator
indicates the contribution of the right-hand side b in spanki{ak}. In detail, for fixed b, the smaller
the contribution of a, outside the space spanned by the other columns, the larger is zi. Or, the
smaller the contribution of ai outside the space spanned by the other columns, the more xi has to
make up for the weakness of ai in the direction spanki{ak}. Moreover, the shorter ai is, the larger
zi has to be because it has to make up for the shortness of aj.

We can also apply the geometric interpretations to the errors resulting from perturbations f in
the right-hand side. The expression for the absolute error from Theorem 2,

if = 11f11cosi11-x,=Iai ll cosa,'

contains a large amplification factor if column a, is short or lies almost in the space spanned
by the other columns. The relative error

e C bosz I
Zi  Cos fli

contains a large amplification factor 1/cos/3i if b lies almost in the space spanned by the other
columns or in Ker(A T ) = Ker(A t) (in the latter case the right-hand side of the normal equations is
zero). Note that the amplification factor for the absolute error only reflects the linear independence
of the matrix columns, yet ignores their relation to the right-hand side.

2.5 Implications for Column Scaling

A diagonal column scaling D of the least squares problem min, IAy- bil to min, JI(AD)z - b[I, where
D = (dij) is a non-singular diagonal matrix, changes only the lengths of the columns but not the
angles, so

I=lblI cosO!1i dai 11 cos a"

In case of a column equilibrated matrix AD, Section 3.5.2 in [121, and [24, 251, where the diagonal
matrix D is chosen so that all columns of AD have identical length, the condition number of AD
comes from the largest angle Cma. of A, as

I_ <_ 1IAD11 Jj( AD)tjl < -5
Cos a m"z- Cos a mar

according to Theorem 3. This bound already appeared in a different form in [21].

Van der Sluis has shown that a column equilibrated matrix A has the lowest condition number
among all matrices of the form AD [24]. This would suggest that one solve only linear systems and
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least squares problems with column equilibrated matrices so as to minimise the condition number
in Iin- x__ < vr;(; ) Ilbll b.

11[ A I-zII j Eb.j

However, the condition number occurs in an upper bound!

An examination of the first expression for the component-wise relative error in Theorem 2 shows
that none of the angles change when the columns of A are multiplied by non-zero scalars. In
particular, if we consider instead the system (AD)z = b, where z = D-x, then the computed
solution . satisfies a perturbed system ADi = b + g. Postmultiplication of A by D corresponds to
premultiplication of At by D- 1 , which changes only the lengths of the rows rT in A t but preserves
the angles fi between b and r,. Hence the amplification factor 1/cosf6i remains invariant under
column scaling.

Therefore, if perturbations are restricted to the right-hand side, then column scaling is only
beneficial if it manages to decrease the relative perturbations Cb cos 10i in the component-wise relative
error (this could occur, for instance, if column scaling brings about a different choice of pivots in
Gaussian elimination).

2.6 Summary

The main result of Section 2 is the pair of expressions for the component-wise relative errors in a
full-rank least squares problem when perturbations are restricted to the right-hand side (Theorem 2).

Suppose z # 0 solves the least squares problem min% hAy - bl, and i solves the corresponding
problem miny JjAy - (b + f)1 with a perturbed right-hand side. The relative error in an individual
component of i can be expressed as

- - b COS Oi

where )i is the angle between b and the ith row of At, 10i is angle between f and the ith row of At , and
eb = IIIU/hibil- Thus, the component-wise relative error consists of a relative perturbation (b cos Oi,
amplified by I/ cosfi6. This amplification factor is large if b is almost orthogonal to the ith row
of A t ; that is, if b lies almost in the space spanned by the other columns or in Ker(A T ) = Ker(At).

Because fli depends only on the direction but not the length of the ith row of At, column scaling
of A is only beneficial if it manages to decrease the relative perturbations eb cos ?P.

We also gave a second expression for the relative error

ii - Zi jIIbj j - j-IIl r1I Lb cos i,,

which provides a clear separation of the factors responsible for the loss of accuracy in the computed
solution: relative magnitude of the solution components IlIjI/jx; matrix condition IAII lirill; and

relationship between matrix and right-hand side wher IA = Ai
matrix condition number. In case of a linear system Ax = b,

IlbH IAx <1,
hAIIII 11 II Ixll

otherwise there is no bound as b may be almost orthogonal to all rows of A t.

12



The component-wise relative error tends to be large for those components xi whose size is small
in comparison to lizij, or whose matrix condition number 1hAil Ilrill is large, or whose right-hand side
is nearly orthogonal to all rows of At. Moreover, Theorem 3 shows that there must be at least one
component ik for which IAil I rkj >I ,(A)/V /. In the special case when Ax = b and b is a singular
vector associated with the smallest singular value of A,

116b1 1 andlbll III lllrill < 1,IIA II l - 1A and IIAII /Ill -t 1

and the sensitvity of all solution components to right-hand side perturbations is solely determined
by their relative magnitude.

In the next section we derive expressions for component-wise relative errors when perturbations
in the matrix are also allowed. For simplicity we start with linear systems, and consider least squares
problems separately in the subsequent section.

3 Perturbation Results for Linear Systems

We derive expressions for component-wise errors in a linear system of full column rank when both
matrix and right-hand side are perturbed. From these expressions we derive component-wise condi-
tion numbers for the individual components of the solution. The expressions for the component-wise
errors are used in turn to derive upper bounds for the norm-based errors that are essentially equal to
the conventional upper bounds. We conclude that the norm-based bounds are as tight as possible.
If they turn out to be pessimistic then this is because one has chosen to measure the norm of the
error instead of the error in individual components.

3.1 Component-Wise Errors

A computed solution i to a linear system Ax = b can be viewed as the exact solution to a perturbed
system (A + F)i = b + f. We will determine how the error in the components of i is affected by
the perturbations F and f.

The first theorem investigates the effect of perturbations in the matrix.

Theorem 6 Given a matrix A of full column rank and b :A 0 such that Ax = b, let the computed
solution i 0 0 satisfy (A + F)i = b.

Denote by 0i the angle between ri and Fi. Then

IIFlhI cos l¢i
lah Icosai

If xi # 0 and (A = then

ii - 1 I IF llCos 0

Xi cos 11 ib

=_ _11411 ilah CA cos 4'i.
Zi
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Proof. In Theorem 2 we set f = -Fi to get

COS 1161"1~ l~'

i 11Fill cos tki
= z laillcosa"

Dividing the whole equation by xi gives the expressions for the component-wise relative error.

The first expression for the component-wise error says that the more b lies in span.- ,{ak}, the
more sensitive is zi to relative perturbations. However a large 1/ cos fli does not necessarily imply
that b has little contribution in aj. In fact, if b = a, and 1/ cosa, is large then 1/ cos)3i will also be
large - in this case cosf6 reflects the linear dependence of the columns of A.

We interpret the second expression for the component-wise relative error in Theorem 6 as follows:
the first term, IzI/ z, represents the relative magnitude of zi; the second term, IlAll hlrdll =
represents the linear dependence of the ith column of A on all other columns; and the last term
CA cos ti represents a relative perturbation for the matrix in the context of the given linear system.
The component-wise relative error tends to be large for those components zi whose size is small in
comparison to jjijj, or whose associated column is short in length or nearly linearly dependent on
the other columns. The two amplification factors in the second expression for the relative error in
Theorem 6 provide a clear separation of the factors responsible for loss of accuracy in the computed
solution: relative magnitude of solution components and linear dependence of matrix columns.

In comparison to the error from right-hand side perturbations in Theorem 2, the error from matrix
perturbations in Theorem 6 does not contain the term FAU1' which describes the relationship
between matrix and right-hand side. According to Theorem 3 we conclude that there always exists
a component zj, whose sensitivity to relative perturbations in the matrix is on the order of ic(A).
This is in contrast to right-hand side perturbations, where b has to lie in a certain direction for the
sensitivity to be proportional to the condition number.

Before resolving this apparent contradiction (in particular, whea the perturbations are due to
backward errors from algorithms, which can be shuffled back and forth between matrix and right-
hand side), we first give an expression for the component-wise relative error for a linear system when
matrix and right-hand side are perturbed simultaneously.

Corollary 1 Given a matrix A of full column rank, and b A 0 such that Ax = b. Let 2 6 0 satisfy
(A + F)i = b+ f.

Denote by Opp the angle between ri and Fi, and by Of,j the angle between r and f. Then

Ilf cos O',i - IIFill cos O,,
Jlaill cos aS

If #i 0 0 and

1= Ti A- A = IJAII[itll

hen

-ilbhh co- X [1IFt cos OF, - Ilfll cos O,,i]
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_ i4l IIAI lIrilI CA COS - IIl Eb cos 101,i
Zi ICf III 21

The second expression for the relative error allows us to state that, in general, for every linear
system there exists a solution component whose sensitivity is proportional to the condition number,
because the term that could avoid this, ]% , multiplies only the right-hand side perturbations
but not the matrix perturbations. In addition, the following theorem shows that for any t A 0 the
perturbations can always be allocated to the matrix.

The following theorem helps to resolve the discrepancies in the r6les of right-hand side and matrix
perturbations. It also justifies the representation of the matrix perturbation in the form CA = AM2.

The bounds on the norm-based relative error [12, 23], usually contain the term PA = IIFII/IlAII as
the representative for the matrix perturbation. But CA !5 PA and, as it turns out, CA constitutes the
smallest possible matrix perturbation.

Theorem 7 Given a matrix A of full column rank and b i 0 such that Ax = b, and a computed
solution i 0 0, let Fmin be the perturbation of smallest Frobenius norm among all perturbations F
that satisfy (A + F).i b (Fmn also has smallest two-norm among all such perturbations).

If xi $ 0 and Cin IIFminII/lAII then

2i- xi IAIIIIfI 1
- _f ' S_ min COs V i,,IlbII cos/i

where 'ki is the angle between Fmini and ri.

If Cr. = lib - AiIl/lbll is the relative residual then

- Ilbll _ I 11 ll IIXll
Cmin IAi1l , rea, ic(A) f ic s- < - "i P

Proof: If f = b - Ai is the residual then Fmin is given by, [18] and Theorem 111.2.16 in [23],

Fmin - T

and satisfies

f = -Fmi n and IIFmi,I = H ,

where the second equality comes about because Fmi has rank one. Substituting Ilfil = IIFi.II I1I1i
into the first expression for the component-wise relative error from Theorem 2 yields the expression
for the error.

The relation between Cmi, and c.eo comes about as fr.8 = flf l/ilbll and IIFm.inl = If11/l11l. E

The proof of Theorem 7 makes clear that, given Az = b and i, the smallest matrix perturbation
satisfies

(A + Fmin)i = b, mn = -i.A 1 =  IAil1

which is exactly the matrix perturbation CA in Theorem 6.
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Moreover, for a given computed solution t one can define two perturbations: the minimal matrix
perturbation min; and the relative residual ,,, which reflects the relationship between matrix and
right-hand side. If the magnitude of the computed solution is not totally off, i.e. if IjzI =z II ll, then
(min is of the same order of magnitude or smaller than ,e,. According to Sections 2.1 and 2.2, gre,

is much larger than ,n,, whenever b lies nearly in the direction of a singular vector associated with
the smallest singular value of A (provided the directions of z and t are not too different).

Regarding the interpretation of error bounds and the determination of amplification factors, one
must therefore be careful about deciding whether to allocate the perturbations to the matrix or
to the right-hand side. We continue this discussion in the context of norm-wise error bounds in
Section 3.4.

In Theorem 7 the relative errors in the different components differ only in cos i/cosoi, while
the term jjAII IlIll/IlbIl is common to all components. Because 1/ cos'3i > 1,

J~i- z' hJAil 11211£- il > jjAjj ,[l fmi. ICOS bi 1,
Izll - EmilbllI

so all components of z are sensitive to matrix perturbations if V1AIl II ll/lbll is large. In particular,
if b lies along the direction of a singular vector associated with the smallest singular value of A
then 1hAII ill/llbll . ic(A). Together with the results from Section 2.3 this implies that the solution
components are extremely sensitive to matrix perturbations exactly when they are insensitive to
right-hand side perturbations.

The expressions for the component-wise errors in this section contain not only the data A and b,
but also the result i. In Appendix 2 we show how to express the relative errors entirely in terms of
the data; although the perturbations take a slightly different form, the magnification factors for the
perturbations continue to be 1 / cos ai and 1 / cos #i.

3.2 Examples

Now we give two examples to illustrate the previous results. The first example demonstrates that a
matrix with perfectly conditioned columns may give rise to a linear system with extremely sensitive
solution components.

Example 1 If A is an orthogonal matrix then - = 1 and, according to Theorem 6, fl1fl/xi
is the sole term responsible for error magnification. Thus, as we already know from the norm-wise
bounds, a solution vector with small as well as large components suffers from large error amplification
in the small components.

This also comes out if we consider instead the angles

1 1 1 =ilil 1 1
cosao lacos, Cos30, zi Ilb l cosi zi

where the next to last equality comes about because 11611 = 11il1.

In contrast to the first example, the second one shows that even a very ill-conditioned matrix
may have robust solution components. It is a generalisation of the example presented in Section 1.1.
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Example 2 Consider a 4 x4 orthogonal matrix A = (a, a2  a3  a4 ) and define a one-parameter
family of matrices by

A(A) = (al a2  a3  VI+A (a3+a4)).

We see that A(O) = A, a well-conditioned matrix, and that A(o) is a singular matrix. For all A,
IIA(A)II < 2. When A < oo, the inverse is given by

a T
rA(A)I-l = a r

L~~aT oAaT
/1 + A2aT

from which we can compute

cos c1 = Ilail Cos1 cos a 2 = ila211cosa 2 = 1
CosC 3 = jjaal cos( 3 ) = cosa 4 = jja 411cos(a 4)= 71M"A

Thus as A - 00 the matrix A(A) becomes increasingly singular. Its condition number behaves like
O(A). Note that the matrix A(A) is column equlibrated, so the ill-conditioning is a result of small
angles rather than short columns.

Consider a linear system A(A)x(A) = b, where the right-hand side is independent of A and can
be represented as b = r1a, + r2 a2 + r3a3 + r4 a4 . Then

cos l =I coI 2 cos3a= r3 - At4 cos r4 =ITSO' =o -L - C O I0 2 C O S ,6 3 C OS"4 "4 =

The solution vector is given by

(A) -- (r, 2 r 3 -A Ar4  V/i" +A 2r4 )T.

The values of z, and X2 are independent of A, and so are Ilaillcosaj and cosj forj = 1,2. So the
sensitivity of the components zx and z 2 depends solely on their size relative to z. If, for instance,
I zil > Ix for i : 1 then Corollary I says that the error in xl is not amplified - independent of the
values of A and the condition number of A(A).

3.3 Condition Numbers and Column Scaling

For a linear system Ax = b with full-rank coefficient matrix A and non-zero right-hand side b,
Corollary 1 presents two different expressions for the component-wise relative error in the computed
solution 2: suppose i # 0 satisfies (A + F)2 = b + f, and

C = Ilbl A = IAII i

then

.ti - Zi1 - 1O [SFi cosF, - Ilfhl cos Of,i]
tlblll cosl,

- Pit JAIl rill A COS IbI C6 COS01
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Sections 2.2 and 3.1 explain that under certain circumstances the factor 1 causes the sensi-
tivity of large solution components to right-hand side perturbations to be independent of matrix
conditioning. We now ignore J61 because it does not affect the sensitivity of the solution to
perturbations in the matrix.

The term IhAII hri = IAII JieTAthl < IhAII IAtl represents a condition number 'restricted to' xi.
Already in 1970 van der Sluis [25, 26] realised the need to distinguish the conditioning of individual
components of x and the fact that the conditioning depends on the relative size of a component. He
introduces the notion of 'ith column condition number of A', IIA-h1 Iladll, and derives the similar
looking norm-wise relative error bound (here f = 0)

i - X11< 11F11 IIA-',1 all 1x"
JJx- - "11 hia

He also acknowledges the importance of angles on the conditioning of the matrix: if each column
is well separated from the space spanned by the other columns then the solution components are
likely to be insensitive to perturbations, page 251 in [26].

According to van der Sluis's bounds one naturally concludes that column equilibrated matrices
(all of whose columns have identical norm) should give rise to solution components with identical
sensitivity to perturbations. Yet, the amplification factor in the first expression for the
component-wise relative error is independent of column scaling. So essentially the conclusions of
Section 2.5 remain valid when, in addition to the right-hand side, the matrix is also perturbed: the
component-wise relative error decreases under column scaling only if column scaling manages to
reduce the perturbation IIFtl cos ?ki - 1[f1 cos ikj,i. Note that we could have also expressed the
error as

iO --at -1 [!!FiI OS O.c,- b COS Ofi

Z, - cosfli L Ibli
in which case the amplification factors for the relative perturbations JiFiIi/Ihbih and cb remain invari-
ant under column scaling. However, when f = 0 we know from Theorem 7 that

IF iI - IIb - Atll = IIAII i11ihlb'I -" l-bhl - ib A,

where IhAII IIIII/llbl can be as large as (A). This means that the perturbation iIIFtl/llbll may be
proportional to the condition number of the matrix. Finally, Lemma 1 of Appendix 2 states that
the amplification factors for the error (i - xi)/ati remain invariant under column scaling when
perturbations are restricted to column i of the matrix.

Although the amplification factors in the second expression for the error above do change under
column scaling, they have the advantage of representing easily computable a posteriori error esti-
mates: we show in Section 6 how to estimate IAIl Ihrdl efficiently with available condition number
estimators.

Due to the deliberations in this and the previous sections we feel justified in introducing a new
set of condition numbers.

Definition 1 Let Ax = b be a linear system with n x m matrix A of rank m and b # 0, and let
1 4 0 be the computed solution. Denote by rT = eTAt the ith row of the left-inverse of A and by 3i
the angle between b and ri, 1 < i < m.

The quantities

h1. IIAII iIri, 1 < i <m,1xil,
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are called 'component-wise condition numbers for the linear system Ax = b'. We also refer to them
as 'condition numbers for xi'.

The validity of this definition is also justified by earlier work of Stewart [21], page 72, who
introduces the 'collinearity indices' ici = Ilail 5 11lrI. The squares of the collinearity indices are known
as 'variance inflation factors' in statistics [21]. From Theorem 5 we see that ic, = 1/ cos ai. They
represent the scaling-invariant version of IAIl Ilrdl and appear as amplification factors in the error
expressions of Appendix 2. The main difference between our and Stewart's condition numbers is
that the collinearity indices are designed to reflect the linear dependence of the matrix columns,
while our component-wise condition numbers measure the conditioning of the linear system: matrix
plus right-hand side.

3.4 Conventional Error Bounds

As we did already in Section 2.3, we now relate our component-wise results to the conventional
norm-based upper bounds on relative errors.

Corollary 2 Given a n x m matrix A of rank m and b : 0 such that Ax = b, as well as i : 0 with
(A + F)i = b+ f, let

S11fl C = IF il116 -Ilbl- / 'A - Ila ll I111"

Then
I -( ) a x JlbJJ I1 - 111P
"7 A lbl - ImIX . CAIFi < vI- IIAIi Ilx J, 1+ 1CA

where p.,i = Ilril cos 1f,i/maxk Ilrkil, PrF, = lrdil cos ioFi/ maxk lIrill, and '.,i and 'Fpi are the
respective angles between the ith row ri of Al with f and Ft.

Proof: Multiplying the last equation in Corollary 1 by xi and applying the infinity-norm gives

i - l = lll max {lIAll ril ,lbl Cb cos ik, - CA cos IPF,i
Sil Ai, IAil

yielding the upper bound

Ili - zll < max fllAi iiri I Hlbli I1l11( 1 c Ilbll iII1,hi-h <mullA hirx} L Cb+ j lIAj __, (A Lxi b&~.I-IIA].

The lower bound is obtained from Theorem 3

I1 - xlleo > -ic(A) max CIll _ II

The mixed-norm error is replaced by the two-norm error by means of the inequalities Ilyll. <-
Ilyll < v/illyllo, for any rn-vector y, Section 2.2.2 in [12]. *

We arrive at the same conclusion as in Section 2.3, where only perturbations in the right-hand
side were allowed. Without knowledge about cosoFii and cos ip,i the norm-based bounds are as
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tight as possible. In fact, under weaker conditions we have derived essentially the same upper bound
as the one commonly found in the literature for non-singular linear systems. In Section 111.2.3 in
[231, for instance, one finds that, subject to the condition IIA-IFI < 1,

P1 - Xll < x(A (PA + Cb), PA = IFI

Ilzil - 1 - x(A)pA IIAII'

while Corollary 2 gives
iz -- zll < v'mc(A)! 1 4 (PA + cb)

1141 - • zl•
In this last, commonly used form the norm-based bound ignores any relationship between matrix
and right-hand side.

Chan and Foulser [7] intended to remedy this ignorance of the right-hand side by modifying the
bound as follows. Let

A=UEVT, where U=(u, ... u), Orl 72>-..>Orn>O0,

be the SVD of a non-singular matrix A with singular values ai and right singular vectors ui. Accord-
ing to Theorem 1 in [7], if A2 = b+f and Pk is the orthogonal projection onto span {u.-k+1, .•.. , u}

II -zll O.-.+1 (IilPkbll'\ -1
Pi o'X1 < 1111 E

ll - a. lbll

Chan and Foulser [7] conclude that if, for some k, a large fraction of b lies in span {u.-k+,., un}
and if orn_k+1 - on then z 'is relatively insensitive to perturbations in b'. For instance, if b = u.
then P1b = 6, 112 - X1 < CblXll _ b,

and we conclude that z is insensitive to perturbations in b.

The interpretation of Theorem I given in [7] is valid if f represents the input error in the data b.
However we do not agree with the application of Theorem 1 in the case when f represents a backward
error chosen to satisfy Ai = 6 + f. As we discussed in Section 3.1, f depends on the size of i. From
Theorem 7 we know that Fmin = _~- is the perturbation of smallest two-norm and Frobenius
norm satisfying (A + Fmn,)i = b, and that

I z i - IlbII=oAll ll I fm.cC os ,,I >_ Ill i (mi.IC O ilI
lil 11611 T -I coib161

When b = u,, the common term ItAll lil/llbll is approximately u1 /o'n, and the sensitivity of all
solution components is proportional to the condition number. A slightly different argument based
on the second statement in Theorem 7,

fmin = it Fibil cil

implies that for 6 = un we have (b - (A)min, and the ill-conditioning is merely hidden in the
perturbation Cb- Consequently, all components of z are extremely sensitive to perturbations if A is
ill-conditioned, which disagrees with the interpretation by Chan and Foulser.
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3.5 Summary

The main results in this section are expressions for the component-wise errors in a linear system
of full column rank when perturbations are allowed in both the matrix and the right-hand side
(Corollary 1).

Suppose A is a matrix of full column rank and b 6 0 such that Az = b. Let 1 # 0 satisfy
(A + F)2 = b + f. If

_ 1111 IIF IICI = I-bl- CA = Il All 11 ill

then the relative error in an individual component of i can be expressed in two ways,

i - T1 b1 Jz, = Ilbil cos /3, tillF II cos VF,, - IJLfLL Ios f,,]

ZiI 1 IIl llI1k__IV I jAII Ir,II LEA -, IIAII IiII Lb cos W ,J

where rT is the ith row of the pseudo-inverse At, 6i is the angle between b and ri, and 1,0F and Of,i
are error angles.

In the first expression, the amplification factors are invariant under column scaling.
Hence the component-wise relative error decreases under column scaling only if column scaling
manages to reduce the size of the perturbations.

In the second expression, the perturbations are amplified by two terms: [[2 1/zi represents the
relative magnitude of zi, and V1AII 1jrill represents the dependence of the ith column of A on all other
columns. Hence the component-wise relative error tends to be large for those components xi whose
size is small in comparison to 1j111, or whose associated column is short in length or nearly linearly
dependent on the other columns.

Theorem 7 demonstrates that any i 6 0 can be viewed as the solution to a linear system whose
perturbations affect only the matrix and leave the right-hand side clean. Hence the amplification
factor for each zi is at least hAIIl 1rill. According to Theorem 3 there always exists a component x&
for whom ilAll jIrkjI is on the order of K(A). Thus any linear system contains a solution component
whose sensitivity to relative perturbations is proportional to the condition number of the matrix.

The quantities
1.4-l [hAJ IlieTAti, 1 < i < m,

are called component-wise condition numbers for the linear system Ax = b.

4 Perturbation Results for Least Squares Problems

We saw in Section 2.1 that, provided the matrix has full column rank, perturbations in the right-hand
side have the same effect for both linear systems and least squares problems. However this is not
true for perturbations in the matrix. A perturbation F in a linear system (A + F). = b represents a
'linear disturbance', and it does not interact with the right-hand side. In contrast, a perturbation F
in a least squares problem min, fI(A + F)y - bil represents a 'quadratic disturbance', because the
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perturbed problem is equivalent to the linear system (A + F)T(A + F)i = (A + F)T b. In addition, the
perturbation F causes a second quadratic disturbance if the right-hand side is perturbed separately.

As in Section 3 we derive expressions for component-wise errors in a least squares problem when
both matrix and right-hand side are perturbed. There exists a component of the solution vector
whose sensitvity equals at least the product of condition number and tan 0, where 0 is the angle
between the right-hand side and the column space of the matrix; the sensitivity can be as high as
the product of tan 0 and the square of the condition number. Least squares problems are therefore
always more sensitive to ill-conditioning than linear systems.

Finally, from the expressions for the component-wise errors we derive an upper bound on the
norm-based error that is essentially equal to the first-order term in the conventional bound.

The perturbation results in this section can be applied to the computation of the left-inverse by
expressing it as the solution X = At to the least squares problem miny IhAY - Ill, and computing
one column of X at a time. Norm-based perturbation results for pseudo-inverses can be found, for
instance, in Section III of [23].

4.1 Component-Wise Errors

Now we consider perturbations in the coefficient matrix of a full-rank least squares problem miny IlAy - bfl.
The following theorem shows that the component-wise errors in a least squares problem consist of
the errors in a linear system, plus a further term.

Theorem 8 Given a matrix A of full column rank, let z i 0 solve miny IhAy - blj and let i # 0
solve min, II(A + F)y - (b + f)ll.

Let
r=eTA t , qT =eT(ATA) - , =b+f-(A+F)#0,

then
1 hFill cos 'F,, - iIfi1 cos V',i+ IIFrTFl cosWq,i

Ilal cos a, + lal 2 cos 2 a ,
where VkF, ias the angle between Fi and ri, 4'p,, is the angle between f and ri, wi is the angle between
ri and ;, and wq,i is the angle between FTF and qj.

If zi 4 0 and CA,, = -r L- then
- rI I
- z= L+ cos Wi
zi lbll cos/3,

L 1 + III ilqill1 2 CA,r, Co s wq,,= ,+ IIAII I1i11 zi

where

L = fI (hF.hllCOS )F~ - I Sllfll__jsl IIAII lrH l AcC ii l bll(bCOSt'f,l
L = bCos A cos IClAho =ihl

is the component-wise relative error in a linear system solution from Corollary 1.

22



Proof: The vector z solves min hAy - bhi if and only if

where r = b - Az, and the inverse of the coefficient matrix equals

AAT At (ATA)

Moreover the vector i solves

( I ~l A+F) (+ = f) or (IT A) (F) =(1) -(Fi-f)

We can now apply Theorem 2 to the above system, whose right-hand sid" perturbation equals
- (F~f) . If qf = eT(ATA) - then

1, = z, - rT(Fi - f) - rTf = z, - ry(F2 - f) + qT FT

because FTf = -ATF. Expressing the inner products in terms of cosines and norms gives

= _ h!FiIIcoslk,-hI f11 cos 4', _lfl1 cosw,

I - IFII cos 4F,i - 11f11 cos ¢',i + , 1= ='- IlIa, IICOSo

where O'r,, is the angle between ri and Fi, O'i is the angle between ri and f, wi is the angle between
r, and j, and w,,i is the angle between qi and F TP.

The second expression for the relative error follows from

jjqjjj JIFTrF11 _ !! jj[...[[qjI J[A1[ 2  111l [[FTf[[
I , 1AIIl l nATIFel

The above theorem contains as special cases the perturbation results derived before. If i happens
to solve the linear system (A + F)i = b + f then f = 0, and, as the first expression for the relative
error shows, the errors reduce to those in a linear system from Corollary 1. If F happens to be zero
then AT - 0, so cos W, = 0 and the errors reduce to those due to pure right-hand side perturbations

from Theorem 2.

Theorem 8 provides two expressions for the component-wise relative error, they differ in the form
of the additional term due to the least squares nature of the problem. We will now examine them
in turn.

The perturbation in the first expression for the relative error in Theorem 8 is cos wi. As argued
above, coswi is zero whenever F is zero. The perturbation is amplified by 1/ cos 43i, which indicates

how linearly dependent 6 is on the space spankti{ak}. The term 1IfrI/I1bII; is independent of i, hence
present in the relative error of each solution component. If 0 is the angle between b and 7JZ(A) then we

show in Section 4.3 thai PjjI = sin0 < 1, where r = b- Ax is the exact residual. Thus, if IFl1l = liril
then IJfIh/hlbil controls the influence on the relative error from the additional term due to the least

squares problem. This term has a greater influence on the error when the distance of b to IZ(A) is
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large: JZ(A) = Rf((At)T) by Theorem 5, so if b is almost orthogonal to rT = eTA t then cos/h 0
and 1/ cos i is very large. The advantage of the first expression for the component-wise relative
error in Theorem 8 is the invariance of its amplification factor under column scaling. However it
seems to be difficult to get a handle on coswi.

That is the reason why Theorem 8 contains an alternative expression for the component-wise
relative error. Although individual fat.-ors in the alternative expression change under column scaling,
we find them easier to interpret. The relative perturbation CA,r cos Wq,i in the least squares term is
amplified by three factors. The first factcr represents, as in the error for linear system solution, the
size of the component zi relative to Il~l. The second factor 11qill JIAII 2 has the bounds

(11r1ll IJAII) < llqj ih lAil 2 = IleT(AT A)-'Il 11Ail 2 < I(A T A)- I 11ilA12 = 2(A),

where we have made use of the inequality il4l 2! 11ril1 from Corollary 6 in the Appendix and the
fact that IIATAll = 1A112 . From Theorem 3 we know that there exists a row rk of A t whose norm
approximates At to a factor of vr-. Hence there exists at least one component xk for which

lqk IIhA1l > 1,C2(A).

The third factor multiplying the relative perturbation, A1 I describes the relationship between

matrix and right-hand side. It will be examined by considering instead the exact quantity j-[l

A few paragraphs ago we introduced the angle 0 between b and TZ(A), so

llrlJ = sin O, 1[Ax -I_ llb - cos O.11bll jIbl lbll
This implies the equality

lirll _ IlAxlj tan0.
IIAUJ j - AII l tlzal

Since lxii = IlAtAxIl < lIAthl hlAzll we get the bounds

I tan0 < < tan0.
oc(A) - IIAlI.IIxll -

Combining all the bounds for the exact quantities shows that for some xk

Iic(A) tan0 < l qjII AllA2 < K2 (A) tan 0.M ( )t n0 _ IIAll 11--11

Consequently, whenever IVII : jlrju and 11il1 =t Ilxil, there exists a so, ition component whose sen-
sitivity equals at least the product of condition number and tan 0, and it may be as high as the
product of tan 0 and squared condition number.

Given a computed solution i to a linear system, Theorem 7 shows how to construct minimal-size
perturbations F, and gives expressions for the corresponding component-wise relative errors. In
the case of least squares problems, unfortunately, we do not know how to construct minimal-size
perturbations for a given computed solution i. Therefore the analogue of Theorem 7 for least squares
problems below is not nearly as strong. When the exact residual r = b - Ax = 0 the expression
below equals the one in Theorem 7.

Theorem 9 Given a matrix A of full column rank, let x : 0 solve min, fAy - blf. Denote the
computed solution by i 5$ 0, the exact residual by r = b - Ax, and the 'computable residual' by
r,. b - Ai.
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Ifzi :A 0 then

- V._ 1 r -- 11r112 Cos O,
Zi Cos f i lbPH

where i'i is the angle between r, - r and the ith row ri of At.

Proof. According to Theorem 111.5.5 in (23], the computed solution i solves the least squares problem

min1 II(A + Fo)y - bIl, where
F0 = (rc -r) T

When r = 0 then F0 equals Fmsn from Theorem 7.

We want to substitute FO into the second expression for the component-wise relative error in
Theorem 8. To this end, note that by construction of F0 , Fo0 = r, - r. Moreover, FT = 0 because

= b - (A + Fo)i = - Foi =

and
0 = (A + Fo)Ti = AT r + FTi = FoTj

due to ATr = 0 and the first part of the proof of Theorem 8.

Theorem 8 gives therefore

i-z___. = 1 Ilrehi-rI l cos,
=, _o Cos 10

where Oj is the angle between ri. At last, 1Ir.-rl2 = IIr,,1 2 -r11r 2 as rTrc = rT(A(x-i)+r) = IIrl12 .
U

We can now define the set of condition numbers for least squares problems, it contains the set
of condition numbers for linear systems.

Definition 2 Let x 6 0 solve the least squares problem miny hAy - bhi with n x m matrix A of

rank m. Let f # 0 be the computed solution with residual f i 0. If qj = eT(ATA) - and rT = eTAt
then the quantities

IIIAi 11 riI IIFl1 IJAi121IqdiI, 1 < i < rn,IxT Ia IIr , IJAll I111

are called component-wise condition numbers for the least squares problem miny IjAy - bhl. We also
refer to them as condition numbers for xi.

4.2 Example and Conventional Error Bounds

We now modify Example 2 for linear systems to illustrate that a least squares problems with a very
ill-conditioned matrix may have extremely insensitive solution components.

Example 3 Consider a 4 x 4 orthogonal matrix A = (a, a 2 a3  a4 ) and define a one-parameter
family of rectangular matrices by

A(A) = (a2 a3  ,7T(Aa3 + a4 )).
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We see that A(O) is a perfectly conditioned matrix, and that A(oo) has two linearly dependent
columns. When A < oo, the left-inverse is given by

=rT  a/ - Aa/

from which we can compute

Ilrill = 1, r211 = 0311 + \2

and

( \1 0 0
[A(A (A )/ ) 1 0 1 = q 0 1 + A

2  -AVI7+XA
XqT 0 -A V'IT-A 1 +A 21/ \q -T 1"" /

with
jIqlj - 1, j1q2j1 = jIq311 -\1(1 + A2)(1 + 2A2).

Thus as A -- oo the matrix AT(A\)A(A\) becomes increasingly singular, and its condition number
behaves like 0(A 2).

Consider a least squares problem min; IIA(A)x(,\) - bjl, where the right-hand side is independent
of A and can be represented as b = r1 a, + r2a2 + r3a3 + r4a4. Solution vector and residual are given
by

X(A)=(T 2 _r3 -_Ar 4  V, + AT 4 )T , r'=Tal.

The value of x, is independent of A, and so are 1lrill, jjq.jj and cos 01 = r2/jbII. Hence the sensitivity
of x, depends solely on its size relative to z, and the distance lIril/lbjl = IrI/lblI of b to the column
space of A. If, for instance, Ixl xi I and I"rlI < IrI for i # 1 then Theorem 8 says that the error
in zx is not amplified - independent of the values of A and the condition number of A(A)A(A).

At last we derive a norm-wise upper bound from the second expression for the component-wise
error in Theorem 8, which turns out to be almost identical to the well-known first-order bound.

Corollary 3 Given a matrix A of full column rank, let x # 0 solve min. IAy - bl) and let i : 0
solve min, II(A + F)y - (b + f)I. Suppose r = b - Az# 0 and f = b + f - (A + F)i # 0.

Ifmax{ ,AN -61 < C then

112 - x-1 < 1 [(A) PH + l!xV +I I K Aj2 ( jA) 1lr l]

where
Ilrl < tan G

tn(A) IJAjf Ijxlj-
and 0 is the angle between b and 1Z(A).

Proof: Multiplying the second expression for the relative error in Theorem 8 by xi gives

=( max[ -11AO , b F coS .,.] + IVII jqjjj JIAI12EA,r COS Wq,i

IZ-xI11, - ilxll min I rt It A cos v, i ill Ila II 1l "
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where
IIII 11 IiF lII _ IIFT  IIe, IlC-[ A = ,I I1 11 A,r - I T I 1

are all bounded above by e. The proof follows from these inequalities and dividing by jjzjj. The

upper and lower bounds on ][ -] were derived in Section 4.1. U

The upper bound on the norm-wise error from Corollary 3 resembles very much the first-order
bound on page 229 in [12], where, subject to the condition that e < x(A),

P - '1I < C [c(A) lii + 1) + X2 (A)tan 0] + O(C2).II1 I - IIA II 1IIT II

If one refrains from replacing ] j by its upper bound tan 0 then the norm-based conventional

bounds are essentially tight. Unfortunately the justification is not as strong as that for linear systems
because we do not have clean lower bounds on the norm-based error. In related work, Van der Sluis
[27] has shown that for any least squares problem there exist perturbations that render the upper

bound on the norm-based error proportional to the square of the condition number.

4.3 The Residual

In this section we briefly examine the error in individual components of the residual r = b - Ax. To
this end denote by P = AAt = A(ATA)-'AT the orthogonal projector on the column space iZ(A)
of A, and by P-" = I - P the orthogonal projector on the orthogonal complement of IZ(A). Hence,
if r = b - Ax is the residual of the least squares problem miny IlAy - b[1 with solution x, we can

write r = P-Lb.

Remember that the residual of the computed solution i is represented by j = (A + F)i - (b + f)
and that it is different from the 'computable residual' b - Ai.

Theorem 10 Given a matrix A of full column rank, let x 6 0 solve min [IAy - bil so that r =

b - Az 3 0, and let 2 solve min , JI(A + F)y- (b + f)J1 so that f = b + f - (A + F)i 5 0.

Let

wi = Atei, Pi = Pei, p = - ei,r , = " ,

then

= - IphIll (IIFhI cos Ot, - Ilfll cos Of,,) + Ilpi'l III1 cos 1,

= z - IliI (hIFhiI CO8Fi - IIfh cos i;,,) - lIwi I JFTilI cosv,

where 4
OFi is the angle between Fi and p -, 01,i is the angle between f and p,-, vi is the angle

between pi and f, and v,.,i is the angle between FTF and wi.

Let
II = IFII IF
-- i bi l ,  - I A I I l i~ l l ' 1,-- I A T I
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If zi ik 0 and -t is the angle between pf and b then

i- 1 11p i 111 cos,]

zj = 1bilcoset, -1 1 1 ZI cos, + _lifl o + I I -A;, I C

in . -l[pP JJA" hil (CA COS OF i Eb CO 01.i) - ill JlAJi CA,.CosV,,•= I- ill JJAJJ I11l

Proof: The proof proceeds in a manner similar to that of Theorem 8. From the proof of Theorem 8
we know

(e )I A (r) = (b) I A+F) (f) = (b+f)(A ( ' 0)

which implies

So,
(A=r - F))(F - ) - (At)TFT A.

Note also that llpLl12 = 1 - lp,112 , due to the symmetry and idempotence of the orthogonal
projectors P and P' = I - P, Section 2.6.1 in [12]. a

We start by examining the first expression for the relative error in Theorem 10. The first
amplification factor contains the angle -i between b and Z' (A). If b is close to 7?(A) then all -i are
large and cos yi are small. Hence, a large 1/ cos yi signals a small component zi of the residual r.

As already mentioned in Section 4.1, the factor 1Ifii/hlbll approximates iirli/lbI = sin 0, where 0
is the angle between b and 7Z(A). For the sake of completeness we briefly derive this well-known
relation. On one hand, the properties of orthogonal projectors imply that

J1r112 = 1ib - AzI 2 = II( - P)b112 = 11b112 
- 1Pbi 2,

and thus

On the other hand, the definition of an angle between two subspaces, Section 12.4.3 in [12], implies
that the angle 0 between b and 7Z(A) satisfies

bT  Pz (Pb)TPz
cos 0 = max - =max

O Ib IllPzlI I io hlbil llPzJl

Substituing b for z and using the Cauchy-Schwartz inequality leads to the bounds

lPbl IlPbli2 < (Pb)T Pz IPbl IlPzII ilPbl

bV ll bll ll - 100 Fxlbftz < _JblI flPzl = JlbJ

and cosO = JlPbll/llbll. Finally,
JfbJ_ = V/ - cos' 0 = sin 0.
Ilbl

Therefore, 11fJl/llbll can be expected to be large when b is far away from the column space of A.
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As for the third amplification factor, an analogous derivation shows that UlPiJI = cos Tn, where ri
is the angle between ei and 1Z(A), so

IIP~I l Cos T, =ctr,.
VT - 2II2p - sin

Hence, when ej is close to 7J(A) then the angle ri is small, and cot ri is large. Like the first
amplification factor this one also signals a small z,.

Now we consider the second expression for the relative error in Theorem 10. The first amplifi-
cation factor 1[IlI/zi represents the magnitude of zi with regard to the whole vector r, which means
that small components of r tend to be more sensitive to perturbations than large components.

Furthermore, we know that there always exists a row wT of At for which llwtil llAtl and

Ilwkill IhAII : (A). Hence there always exists a component of the residual whose sensitivity to
perturbations is proportional to the condition number of A. This also shows up in the remaining
amplification factor for particular right-hand side vectors. There always exists a column t for
which I__ 1 1 IP libll > 1 IP-bll 1 111l

Ptlil > - I7-=" lbhI =1 7lTb -- _ I l

Therefore,
i ,llll IIll , I lrlIl Ail l l ll 1 IlA ll IlxllPiu "fi >-"l v/n-Ijbll llrll - v n= lbll

As demonstrated in Section 3.1, if b is close to a singular direction of A associated with a small
vector then the factor Ilall Ilzll/llbll is close to the condition number #C(A).

We conclude that at least one component of the residual in a full-rank least squares has a
sensitivity proportional to the condition number of the matrix. Note that it is now the columns
of At that determine the sensitivity of the error rather than the rows.

From the expressions in Theorem 10 one can derive an upper bound on the norm-wise relative
error in the residual.

Corollary 4 Given a matrix A of full column rank, let x i 0 solve miny IhAy - bh such that r =
b - Ax # 0, and let i solve min, II(A + F)y - (b + 1)11 such that F = b + f - (A + F) # 0.

If max I # f ,If) < C then

Ili;- < [liI l I l hIIll ( A II + ll[ llJ ) + %A(A) llll + lrll
<,bl IIP ll ----- +ll <,ll + 11@ .

The second upper bound is almost identical to the first-order bound (5.3.9) in [12]

OIF - rl- < E(2(A) + 1) min {1, m - n) + O(e2).
libll

The term min {m - n, 1) accounts for the possibility m = n where, since A has full rank, r = 0 and
p-L = 0.
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4.4 Summary

In this section we have shown that the errors in individual components of a full-rank least squares
problem min% IAY - bhl, when perturbationa are allowed in the matrix and right-hand side, consist of
the linear system errors plus a term whose influence depends on the relation between the right-hand
side vector and the column space of the matrix (Theorem 8).

Given a matrix A of full column rank, let z i 0 solve miny IAy - bh1 and let i $ 0 solve
miny1 1(A + F)y - (b + f)11. Furthermore, let f = b + f - (A + F)i 0 0 and qi be the ith row
of (AT A) - '. If zi : 0 the component-wise relative error can be expressed as

L z VAIl 11211 1 IqiJ JhAi12 CA,r cosWq,,,

where L is the component-wise relative error for linear system solution, CA,r = A , and wq,,i
represents an error angle.

There exists at least one component Zk of the solution vector for whom

1 111 112 < r2-c(A)tanO < hlqrll DA < 2(A)tan0,m hAil hxhl

where 0 is the angle between b and IZ(A). If Iiil - JkrJJ and I1hl - hlxJl then these bounds are also
valid for the term --21 1± IIqlII hAil 2.

The quantities

11-)4AIJ 1eT At1, _JJ hIAI 2JeT(ArA)-', I < i < m,

are called component-wise condition numbers for the least squares problem miny DlAy - bhl.

The expressions for the component-wise error in the residual demonst:ate that there exists at
least one component of the residual whose sensitivity is proportional to the condition number of the
matrix (Theorem 10).

As in the case of linear system solution, we use the expressions for the component-wise errors
to derive the conventional norm-based error bounds for the solution and the residual. We conclude
that the conventional bounds are essentially as tight as possible but our justification is not as strong
as for linear systems.

5 Underdetermined Linear Systems

In this section we discuss the solution of linear systems Ax = b when A is a n x m matrix, n < m,
whose rank is m. Since this system may have infinitely many solutions, we want to compute the
solution of minimal norm.

5.1 Minimal-Norm Solution

Any solution z of Ax = b can be uniquely represented as the sum of its constituents in the nullspace

and row space of A, z = xK + _R with xR E IZ(AT) and xK E Ker(A). If At = AT(AAT) - I is the
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right-inverse of A then At A is the orthogonal projector onto the row space of A, Section 5.5.4 in
[12], and zR = A t Ax.

Note that the component zR in the rowspace is the same for all z. For suppose that were not

the case, then there would exist z and y with

Az=b, Ay=b, r=xR +zK, Y=YR+YK, yRAzR,

and zR, tR E R(AT). These conditions imply that

0 = A(z - y) = A(zR - yR) + A(ZK - yK) = A(xR - yR).

Hence zR - yR is in both R(AT) and Ker(A). But this is only possible if zR - yR = 0 due to the
orthogonality of the spaces R(AT) and Ker(A), Section 2.6.2 in [12]. So zR must be unique.

Since zR is already in the row space of A, an orthogonal projection onto the row space leaves
ZR unchanged, zR - AtAx = Atb, and X = zK + Atb. According to the orthogonality of Ker(A)
and R(A T ), I.112 = IIXZ 112 + IIZRII 2 , which is minimised for ZK = 0. Therefore z R = Atb is the
minimal-norm solution to the linear system Ax = b.

5.2 'Duality'

In the previous section we established that the minimal-norm solution xR to a linear system Ax = b
of full row rank must lie in the rowspace of A, so there is a vector y such that ZR = -ATy. Hence
zR satisfies

ZR + A T y = O, AZ R = b.

In other words, ZR is part of the solution to the non-singular linear system

(I AT)(R (z

Now remember that the solution zC to the least squares problem min IlAy - bil of full column
rank satisfies

r + AzC = b, ATr = 0.

In other words, ZC is part of the solution to the non-singular linear system

(IT A)( ) (b).

Therefore the solution of the full row-rank linear system and the solution of the full column-
rank least squares problems constitute 'dual' problems: the norms of r and ZR are minimised, so r
corresponds to zR while ZC corresponds to y.

Thus a sensitivity analysis of the component-wise errors for the underdetermined system yields
results similar to those of Chapter 3 for the least squares problem, and we will only give a brief
sketch here. The exact solution zR and the computed solution iR, satisfy the linear systems

(I AT (zR) () ( 1 (AF) T  )( f=(O)
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Hence
iR = R _ -  )IA AA T

) ( (At) T  -(AAT) - ) (Fi ,)

and
i R = ZR - p1 F T9 - At (FjR _ f).

Like the residual r in the least squares problem, the sensitivity of the components of ZR depends on
the rows of the projector P-'; and like the solution ZC in the least squares problem, the sensitivity
of ZR is also governed by the rows of At .

The perturbation results can be applied to the computation of the right-inverse by expressing it
as the minimal-norm solution to the linear system AX = I, where I is the n x n identity matrix.

6 Computation and Estimation of Component-Wise Con-
dition Numbers

In this section we discuss how to compute and to estimate the component-wise condition numbers
for linear systems and least squares problems, defined, respectively, in Sections 2.5 and 4.1.

Let z $ 0 be the solution to the least squares problem min IlAy - bhl with n x m matrix A
of rank m. If k # 0 is the computed solution with residual F i 0 then component-wise condition
numbers are IIaiI hirhi hIAIl2 hhq, l, 1 < i < in,

1xi--/ IIJ I'JIA JJ It'ill
where

rT = eTAt, qT =eT(A T A) - '.

The condition numbers for a linear system form a subset of those for a least squares problem.

Numerical issues in the computation of the 11ril, due to the potential ill-conditioning of A,
are addressed in [20], and in the context of statistical errors in [211. Now let us consider the
computational requirements.

The matrix two-norm JAJJ can be bounded by the one-norm hJAll 1 = maxl<i<m Pail via, Sec-
tion 2.3.2 in [12],

The computation of the m vector norms h1aill for JJAJ1 requires a total of 0(mn) operations. The
relative sizes hii h/lzil can be estimated a posteriori from the computed solution i in O(m) operations.
The term A can be estimated a posteriori from the computed residual r, = b - Ai in 0(mn)
operations. This leaves the computation of the 1rill and JJqiJJ.

If a factorisation of A is available then upper bounds on the hrill can be determined in O(n2)
operations, as shown in Section 6, and an estimate of the IhqiJh can be obtained by making use of the
inequality JJqiJJ > hlrsh12 from Corollary 6 in Appendix 1.

In the following sections we discuss how to compute the IirilI from the QR decomposition of A,
how to compute them in the special case where A is bi- or tridiagonal, and how to estimate them
from a decomposition of A.
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To sum up, if A 1 or a factorisation of A is available then the component-wise condition numbers
can be computed or estimated with a total of 0(n 2) operations.

6.1 Computation of Condition Numbers from the QR Decomposition

Let

A=Q (R)

be the QR decomposition of A, where Q is a n x n orthogonal matrix, and R is a m x m non-singular
upper triangular matrix. To compute 11rill and Jjqjjj it is sufficient to work with R instead of A, as
we will now show.

We have
= eT(ATA) - ' = eTR-'RT = R

where vi = R-Tej. This means, once vi has been computed, qj can be determined from vi by solving
the triangular system Rqi = vi in 0(m 2 ) operations. As At = (AT A)-AT we get

rT T AT=v T R - TAT = (vT 0 )QT,

so 1Irill can be determined directly from vi via I11rI = Ivill. Hence, Ijqjj and 11rill can be obtained
from the ith row vr of R- 1 .

In order to accomplish this efficiently we first consider the case i = m. The upper triangular
structure of R implies that v,, = R-Ter, = le,, where p is the element of R in position (m, m).
So lrmII can be determined from the bottom element of R via Ifrm1 = 1/Ipl - without inverting R.
Substituting vm = -em in qm yields Rqm = lem. Therefore, if a QH. decomposition of A is available,

11r,11 is available right away and the computation of q, requires merely the solution of a m x m
triangular system.

This process can be carried out for all i, and is described in [20] for the computation of 11ril. After
choosing a permutation matrix P that moves column i of A to the last position, and performing a
QR factorisation of the permuted matrix AP, proceed as for i = m in order to obtain 11rill and IlqjiI.
The proof of Corollary 6 in the Appendix establishes the correctness of this procedure. One does not
have to perform the QI factorisation from scratch for each permutation P. Gragg and Stewart [13]
show how to efficiently 'update' the QR factorisation from one permutation to the next in O(m 2 )
operations, see also Section 12.6 in [12].

The next section discusses the efficient computation of the IIriI for non-singular bidiagonal and
tridiagonal matrices.

6.2 Computation of Condition Numbers for Bi- and Tridiagonal Matrices

In [14] Higham gives algorithms for computing IIA-'jIIo when A is bi- or tridiagonal. We modify
these algorithms to compute 1lril, where rT = eTA - .
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When
al 2 023

a22 a23

A "-a33 "

arnm

is a m x m non-singular bidiagonal matrix, the elements aii of its inverse are given by [14]

0 ifi>j
Cr = I/a if i = j.

-aj,*,+ai+1j/ai,, if i < j

These expressions and .riJ12 = a?=, ~j lead to the following modification of Algorithm 2.1 in [14]
for the computation of all tri1l 2,

1 2 = 1 1 + a?, 112 rn-ir_+hnr 112 Ir,11 = ., Ii I M - 1 > i >.

This algorithm requires a total of 5m operations. It incurs no round-off error from cancellation
because all quantities involved are non-negative.

When A is a m x m tridiagonal matrix we modify Algorithm 4.2 in [14] to compute the two-norm
of the columns of A - T . Assume that

al 1 a12
a 2 1 a22 a23

A a32 a33 ""

•. •. am- 1,m

aa,m-i amm

be irreducible, that is, ai,i+l and ai+i,i are non-zero. Otherwise one can either introduce small
perturbations to make all ai,i+l and ai+,,i non-zero, or one can treat A as a block tridiagonal
matrix with diagonal blocks that are irreducible tridiagonal [14].

The inverse of a tridiagonal irreducible matrix AT can be represented by means of two vectors y
and z as [5, 14, 29]

(A yjZjpj if i < j
(A-T) P if i >

where
-Taj+l,i a<~ l i < 1.

PlJ' -i+l /  
ai,i+l

The products pj can be computed recursively in 2m operations. To illustrate the computation of y
and z we write out in full the representation of AT,

fYiZi IZ2 YiZ3 ... Yi Zm n

YZ 2  Y2z2 Y2Z3 ... Y2Zm P2

A2- T  yIz3 Y2Z3 Y3Z3 ... Y3Zm P3

Yl Zm Y2 Zm Y3Zm ... Ydm Zm PM

This implies A-Te = ylz and A-Tem = zmpmy. Set Yi = 1. Since AT is tridiagonal, one can solve
for y2, ... , ym from equations 1,...,m - 1 of ATy = (zmpm)-lem; and use equation m to solve
for Zm. Then use ATz = el to solve for zm,..., zl.
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Since column i of A - T equals

r!'=,p j(y zj y2zi ... yj- zj yizi yz++ ... yizm)

we have lrj1 = p2(z E! I y? + y2 ET zj). All l r112 can now be computed in a total of 0(m)
operations by accumulating the two sets of partial sums

Sl=Y21, si =si-1 +y 2 < i<m,

and
tn 2, t, = 2+ + Z, M->i>

and then combining them into

1rl112  p (zs, + yi~+l), < i <M.

When A is a Hessenberg matrix one can probably use the expressions for A- in [5] to compute
Itril2 in a fashion similar to that for tridiagonal matrices.

6.3 Estimation of Component-Wise Condition Numbers

When A is a mxm triangular matrix upper bounds for the Ilrill can be computed in 0(m 2 ) operations
by making use of ideas from condition number estimators for triangular matrices [16], as we will now
show. An estimate of the tlqIl can be obtained from the inequality I[qI [ Irint 2 from Corollary 6 in
Appendix 1.

Since A is triangular, (A-I)i = i/ai and 1/lai.i _ Ilrit < lIlrIli. Instead of A, we will work
with its comparison matrix C(A) = (cij) of A (3], which is defined as

{ la.i if i = j
C" = -laijl ifi i

and satisfies the component-wise inequalities

C(A) - ' > 0, IA-'II _ C(A)-'

because it is an M-matrix [28]. The first inequality implies that the ith element of C(A)-Te equals
IIC(A)-TeIllI, where e is the vector of all ones, while the second one implies Ilri"l _< Ilri[l[ !
IIC(A)-Te Ill. Hence all IIC(A)-Tedli can be computed with a total of 0(m 2) operations by solving
the system C(A)Ty = e.

When A is a general, non-singular matrix, the Ilrill may be estimated by applying the above
estimator to the LU factors of A. Let A = LU, where L is a lower triangular and U is an upper
triangular matrix. If C(L) and C(U) are the respective comparison matrices of L and U then

IL-'I <5 C(L) - ',  IV-'I !5. C(U) - ' ,  IA-11 __ IV-'l IL-'I <5 C(U)-'C(L) - 1.

Thus, Ilril _< Irilli : IIC(L)-TC(U)-Te,lIi, where IIC(L)-TC(U)-TeII, is the ith element of
C(L)-TC(U)-Te and e is the vector of all ones.

Therefore, if the LU decomposition of the m x m matrix A is available, an upper bound on
the lr,ill can be obtained by solving the two triangular systems C(L)Ty = e and C(U)TZ = y in
O(m2 ) operations. Of course, the same is true for the Cholesky decomposition A = LTL of a
symmetric positive-definite matrix A.
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7 Summary

Traditonally, the error in the computed solution i of a system of linear equations Ax = b has been
estimated from the norm of the relative error - xII/IizI.

Amomg the advantages of norm-based errors are straight-forward perturbation analyses as well
as clear, simple error bounds. For example,

- zII ,c(A, x)e

represents an approximate upper bound on the norm of the error in ;, where c is the size of the relative
perturbation in the data A and b, and the condition number K(A, z) determines the sensitivity of
the solution z to perturbations in the data.

In the simplest case, when ic(A, x) equals the two-norm condition number of the matrix A, the
error bound frequently turns out to be rather pessimistic. A more realistic condition number, such as
Skeel's [19], is obtained by exploiting the structure in perturbations from error analyses of algorithms
for linear system solution, e.g. [2]. Still, as we illustrated in Section 1.1, the condition numbers are
prone to overestimating the error in individual components of -4.

As a consequence, we decided to pursue a perturbation analysis for individual components of the
solution z without making any assumptions about the perturbations. The resulting expressions for
the component-wise relative errors Iii - Iz / 1, I are simple and easy to interpret.

The terms that multiply, and possibly amplify, the perturbations in the component-wise errors are
called component-wise condition numbers. Besides being amenable to nice geometric interpretations,
they are able to reveal the existence of solution components that are much better conditioned than
existing condition numbers would lead us to believe. Moreover, barring, any restrictions on the
perturbations, we showed that there is always one component of z whose condition number is
proportional to OC2 (A).

We conclude that no norm-based relative error bound can ever predict the presence of well-
conditioned components in z, assuming no restrictions on the perturbations. Therefore, our component-
wise condition numbers are essential.

It would be interesting to examine how restrictions on the structure or distribution of perturba-
tions affect the component-wise condition numbers.
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8 Appendix 1: Expressions for Left-Inverses

We give 'block' expressions for the left-inverse of a matrix with full column rank, which involve
angles associated with columns of the matrix, and one can clearly see that each part of the left-
it verse has a geometrical interpretation. We used these expressions in Section 2.4 to justify our
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choice of measures of sensitivity in component-wise relative errors for the solution of linear systems
and least squares problems.

In order to explain the emergence of angles, we start off with some geometric interpretations.
Given a n x m matrix A = (a, ... am), n > m, with columns ai the matrix ATA contains
information about the angles vii between individual columns a, and a3 :

(ATA)ij = ayaj = IlaIlllla 11 cosxr 1,

see also (1], page 65.

In contrast, the inverse matrix (ATA) - 1 provides information about the angles associated with
an individual column and the subspace spanned by all other columns, as the next theorem shows.
Thus, while ATA contains 'local' information about columns, the inverse provides a more 'global'
view.

Theorem 11 Let A = (a, At) be a nxm matrix, n > m, of full column rank, where a, represents
the first column of A and A, the remaining columns. Let c be the solution of the least squares
approximation of a, by the columns of A,, so

11aill = minliAly - aill, -d, = Aic -a,
Y

where a, is the residual. Similarly, let dT be the least squares approximation of the columns of A 1
by aj,

[IA111 = minllalyT - A1I - At - aidT - A,.
Y

Then

(A T A)_ - ((Ta) -  (ATAi)1) (ld -.. T)"

Proof: Verify that multiplication of the above expressions by ATA gives the identity.

These particular expressions for the inverse are based on the derivation of a formula for partial
correlation coefficients in [9]. If

(X yT)

M=(Y W)

is a symmetric positive-definite matrix then its inverse can be written as [8]

M 1 = ( (X- yTW-Y)-I -X-1Y(W
- 
yX-IYT)

-
1_W-lY(X _ yTw-1Y)-! (W -YX-1yT) - 1  "

Apply this formula to To o, oTr
A (=aa aTA1'ATA = (ATai AI A 1 ),

and use the fact [9] that the inverse of the (1, 1) element of (ATA) - 1 equals

a, a, - at AI(ATr-ATai - aT (I - A t(AT A 1 )- 1 A T) al =

where I - AI(A TA,)-'AT is the orthogonal projector [12], page 75, onto R-(Al).
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Thus &I is the projection of ai onto the orthogonal complement iZ1 (A 1 ) of the column space

of A, in R", while A, is the projection of A, onto the orthogonal complement 1Z-(ai) of a, in R,

al = (I - Ai(ATAi)-'A)ai, A, = (I - aIaTaia)-l) A,.

It is easy to show that by applying a permutation to the columns of A, the above theorem can
be made to distinguish column ai of A instead of column a,.

Theorem 12 With the notation of Theorem 11, the left-inverse (ATA)-IAT of A can be written as

Ti-
At = (ATA)-A7 = j(ATAi)-iAT

Proof: Multiply the expression in Theorem 11 by AT.

One can clearly see that the first row of (ATA)-AT is orthogonal to Z(Ai), while the remaining
rows are orthogonal to a,. Now we can expr, , the elements of the left-inverse of A in terms of
angles associated with columns of A.

Corollary 5 The ith row rT oj" the left-inverse (ATA)-AT of A has the same direction as the
residual in the least squares approximation of ai by the remaining columns,

rT =eT(ATA)-IAT = I aT - I 1

a, a, ' - fi cos iIaJl aI

while its length is inversely proportional to that of the residual,

1la ll = Ila dII cos ct, = T, I

Because the ith row ri of the inverse is a multiple of the residual ai, its norm is a most natural
criterion for measuring how well the ith column of a matrix can be approximated by the other
columns. As mentioned in Section 2.4, Stewart already proved the relationship

JaJ= minJJAy-aJJI1
V airilI *

The following corollary is needed in the derivation of the component-wise error for least squares
problems in Section 4.1. It states that the length of a row in (ATA) - I is greater than the square of
the length of the corresponding row in At (they are equal when A is non-singular).

Corollary 6 If A is a nxm matrix of rankrn, rf = eTA t , andqT = eT(ATA) - 1 then JIqiJ _> 11 i,11.

Proof: Let

AP=Q( )
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be the QR decomposition of A with column permutations, where P is a m x m permutation matrix,
Q is a n x n orthogonal matrix, and R is a rn x m non-singular upper triangular matrix. If ei = Pei
then

q? = eT(AT A) - ' = eTPT(ATA) - ppT = eTR- R-TpT = T R- T pT

where vi = R-Tej. As At = (ATA)-AT we get

= qAT = VT PTAT ( O )QT.

Hence [[ri[ = -- vjAJ and i[qiI -- R-'vj •

For a fixed P consider the index i for which j = m. The upper triangular structure of R
implies that vm = R-Te_ = lem, where p is the element of R in position (m, m). So 1rill = 1/[p.

Substituting vm = -em in qi yields qi = PR-v_ = 1IPR-lem. Hence IlqiJJ 1/p2 and JqiJJ 11rill.2

In order to prove the corollary for all rows, choose a sequence of permutation matrices such that
ei = Pe, for l < i < m. a

Remark 2 The angles ai associated with the columns of A are equal to the corresponding angles
associated with the rows of (AT A)-AT.
To see why, recall that ai is the angle between ai and ri, where ri constitute the columns of B
[(ATA)-AT] T , and AT is the right-inverse of B with rows aT. Therefore the relevant angles are
those between ri and ai, which are just ai.

Appendix 2: More Perturbation Results

Here we derive perturbation results for linear systems that, unlike those in Section 3, do not contain
computed quantities in the error expressions. This is possible because the perturbations are expressed
differently.

Let i be the computed solution of the linear system Az = b and the exact solution of (A+F)i = b.
In order to assess in more detail the effect of perturbations in the matrix on the component-wise
relative error, we distinguish two cases regarding perturbations in the matrix A: perturbations
confined to the column corresponding to zi, and perturbations of all columns except for the one
corresponding to zi.

Denote by a, and fi the respective columns of A and A + F,

A= (a, ... a,- a, ai+1 ... am), F = (f ... fi-i A fi+ ... f).

We distinguish the ith columns a, and fi from the remaining columns by introducing

Ai = (a a ... ai-I ai+1 ... a,, ), Fi = (fl ... fi-i fi+i ... fin).

As before, a, denotes the angle between ai and and its projection on spanki {ak1, while 3i denotes
the angle between b and the projection of ai onto spani; i{ak}. Due to the particular expres-
sions for the perturbations, the following results are formulated in terms of the projections di of ai
onto span ',{ak), rather than in terms of the rows rT of At. This represents only a small change,
as according to Corollary 5 in Appendix 1 116i, = lIall cosai = 1/iiriI.
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First consider the case when only column a, is perturbed, that is, Fi = 0. In Section 6 of [21]
Stewart discusses this situation in the context of errors in regression variables. Due to his assump-
tions with regard to the statistical nature of the errors, it is difficult to compare his and our results.

The following lemma, whose proof appears at the end of this section, applies to both linear
systems and least squares problems. It shows that in case of linear systems the effect on xi of the
perturbation fi is making itself felt in terms of its size Ifill and in terms of its distance to the
space of the other columns. In some sense, the effect of fi is confined to column ai - although the
direction of fi itself is arbitrary. The reason is that the space spanned by the remaining columns has
dimension n - 1. So its orthogonal complement spank#,{ak} has dimension one. But both, ai and
fi, are projected into this one-dimensional space in order to make up ii. Therefore, the effect of any
perturbation in the ith column is confined to the one-dimensional space span.- ,{ak}. Consequently,
unless ai + fi is zero, there is no question about the right-hand side b remaining in the column space
of A, so cosf6i does not enter the relative error for ii.

In the case of least squares problems, the effect of fi still remains confined to column ai but now
the relation between perturbation and right-hand side matters as well, and cos, 3/ enters the picture.
The smaller the contribution of a, to b outside the space of the other columns, the more the angle
between f, and b matters. Due to the quadratic nature of the least squares problems we get squared
condition numbers in front of second-order error terms.

Lemma 1 Given matrices A and A + F of full column rank with Fi = 0, let x solve miny JlAy - bff
and i solve miny jj(A + F)y - bil. Let Oi be the angle between fi and the projection ai of ai
onto span.' {ak}, and l - Ilfl/IlaI.

If zi = 0 then ii = 0.

If zi $ 0 then

1o+ i-xi _ P 2cossc+Po O.. 0, .Os,.
coo a"-c-P Zi A o i+p cos, Co s cO 3

XiI+2p MA -+ po? 282 Xi COS . Costa, 2 c082 0 Cos
1 +P +os 1 z+ cosaC 1 os 0 Pi

where 4b,i is the angle between b and the projection ji of f, onto span-#,{ak}, and 01,i is the angle
between fi and fi.

If i 6 0 and A is non-singular then

1 -zi p cos 4iPi'-Z cost Cos ai 1 OS0

Co Cos a.

The relative perturbation p, cos qSi associated with a linear system is amplified by the factor
1/ cos ai, which is independent of the righthand side in contrast to Corollary 1. Therefore, the more
the corresponding column ai lies in the space span, i{ak) spanned by the remaining columns, the
larger the relative error in the ith component of i.

With the abbreviations Pci = 1/ cos a, and p5 = -pi cos 4i, the above component-wise relative
error for non-singular linear systems can be written as

2i - _i4p0
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which closely resembles the norm-based relative error for the perturbed system (A + F)i = b

Ili - Xz1 < c(A)p(A) ( IFIi
IxII < 1 - x(A)p(A) 'p(A) = IjI"

Now consider the case when all columns, except for the one associated with zi, are perturbed,
that is f, = 0. Given the original linear system Ax = b, where A is a n x n non-singular matrix, let
the perturbed system (A+ F)i = b+ f satisfy IIA-iI IIFII < 1. This means that A + F is also non-
singular because A + F = A(I + A-IF), and I + A-F is non-singular if IIA- 1Fll < IIA- 111 IIFiI < 1
[121, Lemma 2.3.3. The proof of the following lemma appears at the end of this section.

Lemma 2 Let Ax = b and (A + F)i = b with f, = 0, and IA-111 IIFII < 1.

Define the matrix
Ai = F (I + (AT Ai) AT F ) (AT Ai) AT,

where

IIaiI < '(A)pA PA IIFII
1 < -(A)pA' PA = I1i'

and the related relative errors

Pai=IlAia, ll pbihbl*"= jjadl ' b, = I ,b-

Let -0.,j be the angle between Aiai and the projection &i of ai onto spankGi{ak}, and 'kb,i the angle
between Aib and di.

If zi 0 0 then
-' -oo 40. . ., 04. "

aT(I - Ai)b = 1 - - Pkb,i Co - Z- ceo,- P,,,

iaT(I -Ai)a i -- ' CO 1 -8
coo CN, cc y0,

If i =0 then

fla, = -olb

The vectors Aiai an , Aib are in the column space of Fi. If the column space of Fi is a subset of
the column space of A, hen Fi is orthogonal to span ik {ak }, and cos 0,, and cos Ofb,i are zero, which
implies zi = zi. The angles 0a,i and Ofb,i are bounded above by the angle between spank;di{ak} and
the column space of Fi. As before, the relative error in the ith component of i is the larger the more
the right-hand side b and the corresponding column ai lie in the space spanned by the remaining
columns.

Proof of Lemma 1

From Theorem 1 and Corollary 5 we have

(a, + j,)Tb

(.1,41 i)T(ai + fi)'
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where ai and A, are the respective projections of a, and f, onto span -, ak}.

We first prove the easier case when A is non-singular and span ik{a&} has dimension one. So fi
must be a multiple of di, i.e. fi = Aii for some real number A. Therefore

(1 + A)illal IN 6 cosA = II Ilbll Cos/,

(1 + A)T(a, + fI,) aT(a, + f)

where 6i is the angle between ai and b.

If Oi is the angle between fi and ii, then the denominator of i equals

aT(a, + i) = hiaul Ilaill cos o. + Ilall 11fill cos O,.

Therefore,
Ibll cog 1

Iallcosai, + IlfIlcos, = + -. 1-cos ai la;ll

since zi = 1Ibll co f,/(llai I cos a) by Theorem 1 and Corollary 5.

In the general case when span.;k/{akI may have dimension greater than one, the projection f, is
not a multiple of &i. So,

+ fir.il

iaaf. rha

1d* + 2a! +TL

Denote by Ob,i the angle between Ai and b, and by 01,i the angle between fi and fi. So,

fAb = 1AIl Ilbl cosb,, , fi -- IIf/llIIlfl cos O,.,.

From Corollary 5 we know that laIlI = Ilallcoes ,. In a similar fashion we can show that Vill =
IIfill cos Ofi. This gives the expression for the relative error in the general case.

Clearly ii = 0 whenever zi = 0.

Proof of Lemma 2

Similar to the proofs in Appendix 1, it suffices to show the statement for it.
From Theorem 1 and Corollary 5 we know zi - aTPb/af-Paj, where

= I - (A, + F1 ) ((At + FI)T(A, + F)) - (A, + FI)T.

We consider numerator and denominator of iI separately.

In order to get rid of the inverse inside the projector _P we would like to apply the Sherman-
Morrison-Woodbury formula [12], page 51, in such a way that the inverse of the matrix sum is a
scalar. This is possible if the sum consists of rank-one matrices.

To this end decompose F, into its components in spank. 0{ak and span ;1 {at},

F, = A(ATA,)-'ATF, + 1, where P, = (I - A 1(ATA,)- 1 AT)F.
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Hence
A, + F, = A1 Z + P1, where Z=I+(ATA1 )-'ATF1,

and
(AI + F,)T (A, + F1 ) = (A 1 Z + Fi)T (AIZ + F) = ZT ATAIZ + IT i

since AT 1 - 0. By means of the singular value decomposition of A1 and the interlacing of singular
values of A, and A, [12], Section 8.3.1, we can show that I(ATA 1)-1 ATFtii < IIA- 111 IfF1 < 1, so
by Lemma 2.3.3 in [12] Z is non-singular. Thus,

= I - (At + PZ-')(ATAI + Z-TPjT.PjZ-)-(Aj + PAZ-)T.

As each column of F is in span-L {ak }, and span.-#L{ak} has dimension one, F1 has rank one

and we can write PI = tijf T for some (n - 1) x 1 vector f (the fact that, in case of least squares
problems, the rank of F exceeds one has sofar prevented us from proving this theorem in the more
general case). Now we can apply the Sherman-Morrison-Woodbury formula to

(AT A, + Z-TTAZ--)-- = (ATAI + dTalZ-T ffTz-I)r

= (ATA,)-' - aa (ATIA, )- Z- T f[1 + al'a fTZ-l (AA )-' z-Tf1- fTZ-I (ATAj )-I

Distinguishing the scalars

a i = aTa,, C - Tz-t(ATA,)-fzTf

gives

T7=I-(A,+ AZ - ) (ATA 1)-1  (A T A,)-I1-TffTz-I(A T A,-1) (A1 , FZ-)T.

Multiply the terms in the product and use y = A,(ATAI)-'Z- T f to get

S- I--Aj(AIAt)-'A, +a, (ay To'yy
T 

+ ya
T 

+ Jaal
)

•

The numerator of it equals

atfPb = 1-aT - ayTb) 11-aTy a, (  - FZ-1 (ATA)-'A T )b= - AI)b,

where A, = F1Z-1 (ATA 1)-1 AT. Similarly, the denominator equals
T aTy I 1- adlT T TT.

aTPai - "--- (aT a - aryTai) +- at( - F1Z-I(AT AI)-'A T )a, I - AI)a"

Therefore
aT(I - A)b

1laT(l _ AI)a I ,

which represents the first equality for z, in the statement of the theorem.

Let fl1 be the angle between i and b, and Obj be the angle between a, and Alb. The numerator
of x, satisfies

aIb - TAlb = ffiIdI PH61 cos 01 - fdiall I1ANb1 l cos Ob1 = II&III(Ijbll cos 01 - IIAtbIl cos 0b,1).
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Similarly, with a1 being the angle between d, and a, and with 0.,j being the angle between a1
and Ala,, the denominator satisfies

aTai - aTAja 1ai IIi allcosal - I1ail IIAjaujt cos4 0 , = h1aulI(Ijaui lcosal - IIAuaihllcosaj)

Hence, - Ibil cos 01 - IIjffbjj COS Objff
Ilailllcos al - II~lajllcos0 .,j"

If zI = 0 then

= - IA1b11 COS Ob1
Hadl cosa 1 - hIAuaiI cos o,,,

and otherwise

IHb COS 1 - bl I cOS b, I CIOSbll co b, 1

IIoozIbi o0.1 1 14a1 ____ 1OS1l4s11 C-a- 1cosa,

by Theorem 1 and Corollary 5. This establishes the second equality for X, in the statement of the
theorem and the expression for the relative error in xu.
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